Issue 9, 2023, Issue in Progress

Synthesis of tetrahydrochromenes and dihydronaphthofurans via a cascade process of [3 + 3] and [3 + 2] annulation reactions: mechanistic insight for 6-endo-trig and 5-exo-trig cyclisation

Abstract

Substituted tetrahydrochromenes and dihydronaphthofurans are easily accessible by the treatment of β-tetralone with trans-β-nitro styrene derived Morita–Baylis–Hillman (MBH) acetates through a formal [3 + 3]/[3 + 2] annulation. The reaction proceeds through a cascade Michael/oxa-Michael pathway with moderate to good yields. A DFT study was carried out to account for the formation of the corresponding six and five-membered heterocycles via 6-endo-trig and 5-exo-trig cyclization.

Graphical abstract: Synthesis of tetrahydrochromenes and dihydronaphthofurans via a cascade process of [3 + 3] and [3 + 2] annulation reactions: mechanistic insight for 6-endo-trig and 5-exo-trig cyclisation

Supplementary files

Article information

Article type
Paper
Submitted
22 Dec 2022
Accepted
03 Feb 2023
First published
16 Feb 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 5796-5803

Synthesis of tetrahydrochromenes and dihydronaphthofurans via a cascade process of [3 + 3] and [3 + 2] annulation reactions: mechanistic insight for 6-endo-trig and 5-exo-trig cyclisation

Y. P. Reddy, V. Srinivasadesikan, R. Balamurugan, M. C. Lin and S. Anwar, RSC Adv., 2023, 13, 5796 DOI: 10.1039/D2RA08163F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements