Issue 16, 2023, Issue in Progress

Novel sustainable magnetic material to improve the wireless charging of a lightweight drone

Abstract

Unmanned aerial vehicles are clear candidates to benefit from wireless power transfer, as it can facilitate their charging process and even allow them to charge autonomously. One common approach when designing a wireless power transfer (WPT) system is to incorporate ferromagnetic material to guide the magnetic field and improve system efficiency. However, a complex optimization calculation must be carried out to determine the positions and size of the ferromagnetic material and thereby restrict the additional weight imposed. This is severely limiting in the case of lightweight drones. To alleviate this burden, we show the feasibility of incorporating a novel sustainable magnetic material, called MagPlast 36-33, which has two main features. First, it is lighter than ferrite tiles and can therefore be used without having to consider complex geometries to reduce the weight. In addition, its manufacturing process is based on the principle of sustainability, since it is produced from recycled ferrite scrap generated in the industry. Its physical characteristics and properties mean that it can be used to improve the efficiency of the wireless charger, adding a weight lower than that of conventional ferrites. The experimental results we obtained in the laboratory demonstrate the feasibility of using this type of recycled material in lightweight drones operating at the frequency imposed by SAE J-2954. Furthermore, we have conducted a comparative analysis with a different ferromagnetic material commonly used in WPT systems, in order to verify the benefits of our proposal.

Graphical abstract: Novel sustainable magnetic material to improve the wireless charging of a lightweight drone

Article information

Article type
Paper
Submitted
07 Dec 2022
Accepted
20 Mar 2023
First published
04 Apr 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 10556-10563

Novel sustainable magnetic material to improve the wireless charging of a lightweight drone

A. Triviño, I. Casaucao, J. C. Quirós, P. Pérez and A. Rojas, RSC Adv., 2023, 13, 10556 DOI: 10.1039/D2RA07800G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements