Issue 4, 2023

Carbazole-based photocatalyst (4CzIPN) for novel donor–acceptor (D–A) fluorophore-catalyzed visible-light-induced photosynthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones via a proton-coupled electron transfer (PCET) process

Abstract

Based on the Biginelli reaction of β-ketoesters, arylaldehydes, and urea/thiourea, we created a green radical synthesis procedure for 3,4-dihydropyrimidin-2-(1H)-ones/thiones. A PCET (proton-coupled electron transfer) photocatalyst was used in an ethanol solution in an air environment and at room temperature and visible light to provide a renewable energy source. In this study, we seek to create a novel donor–acceptor (D–A) fluorophore that is affordable and widely available. The carbazole-based photocatalyst (4CzIPN), in addition to its time-saving capabilities and simplicity of use, exhibits excellent yields, is energy-efficient, and is ecologically friendly. This makes it possible to track the evolution of environmental and chemical factors throughout time. To determine the turnover number (TON) and turnover frequency (TOF) of 3,4-dihydropyrimidin-2-(1H)-ones/thiones, a study was done. Gram-scale cyclization demonstrates that it may be used in industry effectively.

Graphical abstract: Carbazole-based photocatalyst (4CzIPN) for novel donor–acceptor (D–A) fluorophore-catalyzed visible-light-induced photosynthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones via a proton-coupled electron transfer (PCET) process

Supplementary files

Article information

Article type
Paper
Submitted
07 Nov 2022
Accepted
06 Jan 2023
First published
17 Jan 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 2514-2522

Carbazole-based photocatalyst (4CzIPN) for novel donor–acceptor (D–A) fluorophore-catalyzed visible-light-induced photosynthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones via a proton-coupled electron transfer (PCET) process

F. Mohamadpour, RSC Adv., 2023, 13, 2514 DOI: 10.1039/D2RA07064B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements