Diaspore as an efficient halide-free catalyst for the conversion of CO2 into cyclic carbonates†
Abstract
Efficient fixation of carbon dioxide (CO2) into epoxides under atmospheric pressure generally necessitates the use of halide ion-containing co-catalysts. However, the use of halide ion-containing materials as catalysts is less encouraged, particularly from an industrial point of view. This demands the development of a suitable halide-free catalyst for the successful fixation of CO2 into epoxides to prepare cyclic carbonates under atmospheric pressure. In this work, we report diaspore [α-AlO(OH)] as an efficient halide-free catalyst for CO2 fixation. Diaspore in the presence of a small amount of dimethyl formamide is able to convert a range of epoxides into their corresponding cyclic carbonates. Hardly any loss in the catalytic activity or change in the functional/chemical characteristics of diaspore was observed after five cycles. DFT calculations reveal the spontaneity of the diaspore-catalyzed cycloaddition reaction compared to that of the diaspore-free reaction. The stabilization of the substrates and intermediates on diaspore resulted in an overall negative change in Gibb's free energy of the reaction.

Please wait while we load your content...