Issue 34, 2023

A decade update on the application of β-oxodithioesters in heterocyclic synthesis

Abstract

The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers (i.e., α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles (e.g., thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks.

Graphical abstract: A decade update on the application of β-oxodithioesters in heterocyclic synthesis

Article information

Article type
Review Article
Submitted
19 Apr 2023
Accepted
28 Jul 2023
First published
01 Aug 2023

Org. Biomol. Chem., 2023,21, 6806-6829

A decade update on the application of β-oxodithioesters in heterocyclic synthesis

Z. Dong, Z. Gong, Q. Dou, B. Cheng and T. Wang, Org. Biomol. Chem., 2023, 21, 6806 DOI: 10.1039/D3OB00601H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements