Issue 47, 2023

Stretching of immersed polyelectrolyte brushes in shear flow

Abstract

The way that polymer brushes respond to shear flow has important implications in various applications, including antifouling, corrosion protection, and stimuli-responsive materials. However, there is still much to learn about the behaviours and mechanisms that govern these responses. To address this gap in knowledge, our study uses in situ X-ray reflectivity to investigate how poly(styrene sulfonate) (PSS) brushes stretch and change in different environments, such as isopropanol (a poor solvent), water (a good solvent), and aqueous solutions containing various cations (Cs+, Ba2+, La3+, and Y3+). We have designed a custom apparatus that exposes the PSS brushes to both tangential shear forces from the primary flow and upward drag forces from a secondary flow. Our experimental findings clearly show that shear forces have a significant impact on how the chains in PSS brushes are arranged. At low shear rates, the tangential shear force causes the chains to tilt, leading to brush contraction. In contrast, higher shear rates generate an upward shear force that stretches and expands the chains. By analysing electron density profiles obtained from X-ray reflectivity, we gain valuable insights into how the PSS brushes respond structurally, especially the role of the diffuse layer in this dynamic behaviour. Our results highlight the importance of the initial chain configuration, which is influenced by the solvent and cations present, in shaping how polymer brushes respond to shear flow. The strength of the salt bridge network also plays a crucial role in determining how easily the brushes can stretch, with stronger networks offering more resistance to stretching. Ultimately, our study aims to enhance our understanding of polymer physics at interfaces, with a particular focus on practical applications involving polymer brushes.

Graphical abstract: Stretching of immersed polyelectrolyte brushes in shear flow

Supplementary files

Article information

Article type
Paper
Submitted
21 Aug 2023
Accepted
10 Nov 2023
First published
13 Nov 2023

Nanoscale, 2023,15, 19282-19291

Stretching of immersed polyelectrolyte brushes in shear flow

Y. Qiao, Q. He, H. Huang, D. Mastropietro, Z. Jiang, H. Zhou, Y. Liu, M. V. Tirrell and W. Chen, Nanoscale, 2023, 15, 19282 DOI: 10.1039/D3NR04187E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements