Issue 27, 2023

The ruthenium complex assists in nuclear targeting and selective killing of tumor cells

Abstract

In clinical studies, the toxicity of platinum-based antitumor drugs limits their use. DNA is the most widely studied target of metal-based complexes. Thus, nuclear targeting and selective killing have become the purpose of ruthenium complex design. We synthesized a carboline derivative and its ruthenium complex, NBD and NBD-Ru, and characterized their properties. UV spectra were used to monitor their stability. Transmission electron microscopy and dynamic light scattering were used to identify the self-assembly properties. Inductively coupled plasma mass spectrometry was used to assay the distribution of the Ru complexes in cells with or without transferrin. Besides, the tumor cell killing activities with or without transferrin were detected by MTT assay. An imaging flow cytometer was applied to observe the fluorescence further to identify the cellular distribution. The effects of NBD and NBD-Ru on DNA and the cell cycle were also measured. In vivo, the antitumor and antimetastatic activities of NBD and NBD-Ru were assessed in S180 and LLC tumor-bearing mice. We found that introducing Ru improved the solubility and stability, enabling NBD-Ru to self-assemble into nanoparticles with the EPR effect. At the same time, binding affinity with transferrin increased significantly after complexation, meaning NBD-Ru could target and selectively kill tumors via Tf/TfR pathway. More interestingly, ruthenium assisted the complex in achieving nuclear penetration, which can kill tumor cells by interacting with DNA. In vivo experiments further verified our conclusion in vitro. NBD-Ru could inhibit not only the growth of a primary tumor but also lung metastasis, which was related to the killing effect of the complex on tumor cells (Ki67) and inhibition of neovascularization (CD31). At the same time, the systemic toxicity of the ruthenium complex in vivo was reduced because of the targeting effect, and the biosafety was improved. In conclusion, we found that ruthenium assisted in nuclear targeting and selective killing in vitro and in vivo.

Graphical abstract: The ruthenium complex assists in nuclear targeting and selective killing of tumor cells

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2023
Accepted
18 Jun 2023
First published
20 Jun 2023

Nanoscale, 2023,15, 11529-11543

The ruthenium complex assists in nuclear targeting and selective killing of tumor cells

Y. Lu, D. Zhu, L. Chan, B. Hu, M. Tuohan, L. Li, W. Wang and Y. Wang, Nanoscale, 2023, 15, 11529 DOI: 10.1039/D3NR02707D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements