Issue 5, 2023

Strain engineering of hyperbolic plasmons in monolayer carbon phosphide: a first-principles study

Abstract

Natural and tunable in-plane hyperbolic plasmons have so far been elusive, and hence few two-dimensional hyperbolic materials have been theoretically and experimentally discovered. Here, comprehensive first-principles calculations were conducted to study the electronic and plasmonic properties of biaxially strained monolayer carbon phosphide (β-CP). We found that (i) a compressed β-CP hosts strong anisotropic Dirac-shaped fermions with robust modulated Fermi velocity, (ii) for biaxial strain of −3% an unprecedented ultra-wide hyperbolic window is extended continuously from terahertz (9 THz) to mid-visible (blue light, 693 THz), (iii) the tunable optical Van Hove singularity as the origin of hyperbolic plasmons in deformed β-CP is disclosed, (iv) an elliptic to hyperbolic transition in the σ-near-zero regime is demonstrated in terahertz frequencies (9 THz), (v) the propagation angle of the concave wavefront can be actively tuned using biaxial strains, and (vi) hyperbolic dispersion reorientation from one principal axis to another orthogonal one under compressive strains larger than 8% is observed. This study sheds new light on the unique properties of hyperbolic two-dimensional (2D) materials having exotic optoelectronic characteristics which are promising candidates for anisotropic light control with ultimate dexterity in the flat optics.

Graphical abstract: Strain engineering of hyperbolic plasmons in monolayer carbon phosphide: a first-principles study

Article information

Article type
Paper
Submitted
17 Nov 2022
Accepted
23 Dec 2022
First published
11 Jan 2023

Nanoscale, 2023,15, 2234-2247

Strain engineering of hyperbolic plasmons in monolayer carbon phosphide: a first-principles study

M. Dehdast, M. Neek-Amal, C. Stampfl and M. Pourfath, Nanoscale, 2023, 15, 2234 DOI: 10.1039/D2NR06439A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements