Issue 4, 2023

Rare-earth-doped indium oxide nanosphere-based gas sensor for highly sensitive formaldehyde detection at a low temperature

Abstract

Formaldehyde (HCHO) is widely viewed as a carcinogenic volatile organic compound in indoor air pollution that can seriously threaten human health and life. Thus, there is a critical need to develop gas sensors with improved sensing performance, including outstanding selectivity, low operating temperature, high responsiveness, and short recovery time, for HCHO detection. Currently, doping is considered an effective strategy to raise the sensing performance of gas sensors. Herein, various rare earth elements-doped indium oxide (RE-In2O3) nanospheres were fabricated as gas sensors for improved HCHO detection via a facile and environmentally solvothermal method. Such RE-In2O3 nanosphere-based sensors exhibited remarkable gas-sensing performance, including a high selectivity and stability in air. Compared with pure, Yb-, Dy-doped In2O3 and different La ratios doped into In2O3, 6% La-doped In2O3 (La-In2O3) nanosphere-based sensors demonstrated a high response value of 210 to 100 ppm at 170 °C, which was around 16 times higher than that of the pure In2O3 sensor, and also exhibited a detection limit of 10.9 ppb, and a response time of 30 s to 100 ppm HCHO with a recovery time of 160 s. Finally, such superior sensing performance of the 6% La-In2O3 sensors was proposed to be attributed to the synergistic effect of the large specific surface area and enhanced surface oxygen vacancies on the surface of In2O3 nanospheres, which produced chemisorbed oxygen species to release electrons and provided abundant reaction sites for HCHO gas. This study sheds new light on designing nanomaterials to build gas sensors for HCHO detection.

Graphical abstract: Rare-earth-doped indium oxide nanosphere-based gas sensor for highly sensitive formaldehyde detection at a low temperature

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2022
Accepted
11 Dec 2022
First published
15 Dec 2022

Nanoscale, 2023,15, 1609-1618

Rare-earth-doped indium oxide nanosphere-based gas sensor for highly sensitive formaldehyde detection at a low temperature

X. Ma, H. Zhu, L. Yu, X. Li, E. Ye, Z. Li, X. J. Loh and S. Wang, Nanoscale, 2023, 15, 1609 DOI: 10.1039/D2NR04972D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements