Issue 27, 2023

Tetraalkylammonium-based dicationic ionic liquids (ILs) for CO2 capture

Abstract

This investigation includes the synthesis and characterization of a new series of ionic liquids (ILs) based on the tetraalkylammonium dication for the absorption of CO2, a step towards the development of more efficient and sustainable technologies. It was possible to synthesize amine-substituted PEG diacrylate by modifying poly(ethylene glycol) (PEG), which was then quaternized with 1-bromopentane to produce the IL PDBr. The other IL products, PDNTf2, PDBF4 and PDPF6, were synthesized via the metathesis of PDBr with the appropriate salt. The synthesized products were characterized using various techniques, such as FTIR, 1H and 13C NMR, elemental analysis, and density and viscosity meters, and evaluated as potential sorbents for CO2 capture. DSC and TGA were used to examine the thermal properties of the ILs. As observed from their thermal degradation behavior, the ILs exhibited two-stage disintegration with thermal stability up to 150 °C. The pressure drop method was used to study the sorption capacity of the ILs towards CO2. The sorption investigation showed that when the pressure is increased, the CO2 absorption increases. Equilibrium is reached in 40 minutes, demonstrating a rapid absorption rate. The IL with the [BF4] anion (PDBF4) demonstrated a maximum sorption capacity of 0.577 mole fraction of CO2, and can be regenerated and reused efficiently with less than 0.5% variation from its original absorption capacity. The CO2 absorption capacity for the ILs with other anions follows the trend: Br ≈ NTf2 < PF6 < BF4. This work shows that tetraalkylammonium-based dicationic ILs are adaptable, making them a suitable material for many applications, including sustainable CO2 capture technology.

Graphical abstract: Tetraalkylammonium-based dicationic ionic liquids (ILs) for CO2 capture

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2023
Accepted
31 May 2023
First published
08 Jun 2023

New J. Chem., 2023,47, 12944-12954

Tetraalkylammonium-based dicationic ionic liquids (ILs) for CO2 capture

P. S. Kulkarni, P. Ranjane, K. Mishra, S. Sundararajan and S. Kamble, New J. Chem., 2023, 47, 12944 DOI: 10.1039/D3NJ01552A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements