Issue 1, 2023

Surface double modification and photocatalytic performance of graphite carbon nitride

Abstract

Graphite carbon nitride (g-C3N4) has attracted much attention in the field of photocatalysis because of its visible light response and stable properties. However, its photocatalytic activity is not ideal because of its limited visible light response range, easy recombination of photogenerated electron holes, and poor dispersion. In this study, the visible light catalytic performance of g-C3N4 was significantly improved by the double modification method of surface hydroxyl and coupling agent grafting. Firstly, g-C3N4 was prepared by thermal polymerization with melamine as the raw material, and then the surface hydroxyl group was introduced by hydrogen peroxide. Finally, the organic groups were grafted on the surface of g-C3N4 by using silane coupling agent YDH171 as the grafting agent. The catalysts were characterized by FT-IR, XPS, XRD, contact angle measurements, UV-vis DRS, PL, electrochemical methods and particle size distribution. Taking simulated oily wastewater as the target material, the reaction rate of graphite carbon nitride was increased by 2.7 times after surface double modification. Moreover, a radical trap experiment was carried out, which indicated that the hole acted as the main reactive species for the photocatalytic degradation process. The catalytic mechanism of the material was investigated. The results showed that the synergistic effect of surface hydroxyl group grafting and coupling agent grafting increased the separation efficiency of photogenerated electron holes and improves their dispersion in water, thus promoting the photocatalytic performance of the catalyst.

Graphical abstract: Surface double modification and photocatalytic performance of graphite carbon nitride

Article information

Article type
Paper
Submitted
10 Aug 2022
Accepted
14 Nov 2022
First published
15 Nov 2022

New J. Chem., 2023,47, 333-341

Surface double modification and photocatalytic performance of graphite carbon nitride

J. Luo, Y. Liu, J. Li and H. Song, New J. Chem., 2023, 47, 333 DOI: 10.1039/D2NJ03970B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements