Issue 7, 2023

High performance multi-purpose nanostructured thin films by inkjet printing: Au micro-electrodes and SERS substrates

Abstract

Nanostructured thin metal films are exploited in a wide range of applications, spanning from electrical to optical transducers and sensors. Inkjet printing has become a compliant technique for sustainable, solution-processed, and cost-effective thin films fabrication. Inspired by the principles of green chemistry, here we show two novel formulations of Au nanoparticle-based inks for manufacturing nanostructured and conductive thin films by using inkjet printing. This approach showed the feasibility to minimize the use of two limiting factors, namely stabilizers and sintering. The extensive morphological and structural characterization provides pieces of evidence about how the nanotextures lead to high electrical and optical performances. Our conductive films (sheet resistance equal to 10.8 ± 4.1 Ω per square) are a few hundred nanometres thick and feature remarkable optical properties in terms of SERS activity with enhancement factors as high as 107 averaged on the mm2 scale. Our proof-of-concept succeeded in simultaneously combining electrochemistry and SERS by means of real-time tracking of the specific signal of mercaptobenzoic acid cast on our nanostructured electrode.

Graphical abstract: High performance multi-purpose nanostructured thin films by inkjet printing: Au micro-electrodes and SERS substrates

Supplementary files

Article information

Article type
Paper
Submitted
15 Dec 2022
Accepted
16 Feb 2023
First published
16 Feb 2023
This article is Open Access
Creative Commons BY license

Nanoscale Adv., 2023,5, 1970-1977

High performance multi-purpose nanostructured thin films by inkjet printing: Au micro-electrodes and SERS substrates

S. Ricci, M. Buonomo, S. Casalini, S. Bonacchi, M. Meneghetti and L. Litti, Nanoscale Adv., 2023, 5, 1970 DOI: 10.1039/D2NA00917J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements