Cu2O/Co3O4 nanoarrays for rapid quantitative analysis of hydrogen sulfide in blood†
Abstract
2D heterostructure nanoarrays have emerged as a promising sensing material for rapid disease detection applications. In this study, a bio-H2S sensor based on Cu2O/Co3O4 nanoarrays was proposed, the controllable preparation of the nanoarrays being achieved by exploring the experimental parameters of the 2D electrodeposition in situ assembly process. The nanoarrays were designed as a multi-barrier system with strict periodicity and long-range order. Based on the interfacial conductance modulation and vulcanization reaction of Cu2O and Co3O4, the sensor exhibited superior sensitivity, selectivity, and stability to H2S in human blood. In addition, the sensor exhibited a reasonable response to 0.1 μmol L−1 Na2S solution, indicating that it had a low detection limit for practical applications. Moreover, first-principles calculations were performed to study changes in the heterointerface during the sensing process and the mechanism of rapid response of the sensor. This work demonstrated the reliability of Cu2O/Co3O4 nanoarrays applied in portable sensors for the rapid detection of bio-H2S.