Issue 3, 2023

Molecular dynamics simulation of solidification epitaxial growth in a nanoscale molten pool

Abstract

In the hot working process, the liquid metal part formed by the heat source on the workpiece is known as molten pool. Since the solidification process of the molten pool determines the mechanical properties of the structure after hot working, the molten pool solidification under the condition of rapid solidification has attracted the attention of researchers. In thisstudy, to understand the influence of the microstructure and morphology of the base metal on the solidification of the molten pool, a simulation system of epitaxial growth during the solidification of the molten pool is established based on molecular dynamics (MD), and the details of the epitaxial growth of the molten pool solidification are dynamically monitored. The results show that the nano molten pool produces two atomic layers of pre-melting on the base metal before solidification, and then, the molten pool continues to grow with the exposed and ordered atoms of the base metal as the nuclei. The transformation process of the final obtained solidification morphology is consistent with the results observed by in situ TEM experiments. These phenomena reveal the mutual guidance between the molten pool and the base metal during the solidification of the molten pool as well as the genetic effect of the parent metal on the crystallization of the molten pool. In addition, the crystal growth of molten pool solidification follows the growth pattern of directional solidification, from equiaxed to columnar, but the average grain size of each zone is smaller than that of directional solidification. Even the nucleation rate and dislocation density are an order of magnitude higher than in directional solidification. Therefore, the simulation results lay a foundation for the in-depth study of the molten pool solidification process at the atomic scale.

Graphical abstract: Molecular dynamics simulation of solidification epitaxial growth in a nanoscale molten pool

Article information

Article type
Paper
Submitted
29 Jun 2022
Accepted
04 Jan 2023
First published
06 Jan 2023
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2023,5, 943-954

Molecular dynamics simulation of solidification epitaxial growth in a nanoscale molten pool

L. Zhan, N. Li and X. Qin, Nanoscale Adv., 2023, 5, 943 DOI: 10.1039/D2NA00419D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements