Issue 6, 2023

Geographical origin traceability of rice using a FTIR-based metabolomics approach

Abstract

Infrared spectroscopy is a crucial tool to achieve the origin traceability of rice, but it is constrained by data mining. In this study, a novel infrared spectroscopy-based metabolomics analytical method was proposed to discriminate rice products from 14 Chinese cities by seeking ‘wave number markers’. Principal component analysis (PCA), cluster analysis and orthogonal partial least squares discriminant analysis (OPLS-DA) were employed to separate all rice groups. The S-plot, permutation test and variable importance in projection (VIP) are used to screen eligible ‘markers’, which were further verified by a pairwise t-test. There are 55–265 ‘markers’ picked out from 14 rice groups, with their characteristic wave number bands to be 2935.658–3238.482, 3851.846–4000.364, 3329.136–3518.160, 1062.778–1213.225, 1161.147–1386.819, 3348.425–3560.594, 3115.038–3624.245, 2567.254–2872.007, 3334.923–3560.594, 3282.845–3543.235, 3338.780–3518.160, 3197.977–3560.594, 3163.258–3267.414 and 3292.489–3477.655 cm−1, respectively. All but No. 5 rice groups show significantly low absorbance on their ‘marker’ bands. A mixed rice containing congenial No. 5 and No. 6 rice (80 : 20, m/m) was employed to test the validity of the method, and found that the ‘marker’ band of the mixed rice is the range of 1170.791–1338.598 cm−1, implying the existence of considerable discrepancy between the mixed rice and other rice. The results indicate that infrared spectroscopy coupled with metabolomics analysis is competent for origin traceability of rice; thus, it provides a novel and workable approach for the accurate and rapid discrimination of rice from different geographical origins, and a distinctive perspective of metabolomics to explore infrared spectroscopy and beyond, especially not confined in the field of origin traceability.

Graphical abstract: Geographical origin traceability of rice using a FTIR-based metabolomics approach

Supplementary files

Article information

Article type
Research Article
Submitted
16 Nov 2022
Accepted
19 Apr 2023
First published
20 Apr 2023

Mol. Omics, 2023,19, 504-513

Geographical origin traceability of rice using a FTIR-based metabolomics approach

W. Xue, Q. Wang, X. Li, M. Wang, Z. Dong, H. Bian and F. Li, Mol. Omics, 2023, 19, 504 DOI: 10.1039/D2MO00317A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements