Issue 2, 2023

Activation of KLF6 by titanate nanofibers and regulatory roles of KLF6 on ATF3 in the endothelial monolayer and mouse aortas

Abstract

Although titanium (Ti)-based nanomaterials (NMs) were traditionally considered as biologically inert materials, it was recently reported that Ti-based NMs induce adverse vascular effects by inhibiting Kruppel-like factor 2 (KLF2) and/or KLF4, vasoprotective KLFs with well-documented regulatory activity in NO signaling. However, the potential roles of other KLFs are not clear. KLF6 was recently identified as an important KLF involved in regulating endothelial dysfunction, inflammation, and angiogenesis, therefore, this study investigated the influence of titanate nanofibers (TiNFs) on KLF6-mediated events. Ingenuity pathway analysis (IPA) showed that TiNFs altered the expression of a panel of KLF6-related genes: KLF6-mediated gene ontology (GO) terms were altered, categories including cytokine-mediated signaling pathways, transcription factor (TF) functions and membrane-bound organelles. Additionally, RT-PCR confirmed that TiNFs increased KLF6 activating transcription factor 3 (ATF3), a TF involved in endoplasmic reticulum (ER) stress, and ELISA confirmed the increase of soluble monocyte chemotactic protein 1 (sMCP-1), a KLF6-related inflammatory cytokine. Interestingly, the activation of klf6, atf3 and C–C motif chemokine ligand 2 (ccl2; mcp-1 encoding gene) was observed in aortas of mice following one-time intravenous injection but not intratracheal instillation of TiNFs (100 μg per mouse), indicating a need for direct contact with NMs to activate klf6-mediated pathways in vivo. In endothelial cells, KLF6 knockdown inhibited the expression of ATF3 but not CCL2, suggesting the regulatory role of KLF6 in ATF3 expression. Overall, this study uncovered a previously unknown role of KLF6 in TiNF-induced vascular effects both in vitro and in vivo.

Graphical abstract: Activation of KLF6 by titanate nanofibers and regulatory roles of KLF6 on ATF3 in the endothelial monolayer and mouse aortas

Supplementary files

Article information

Article type
Research Article
Submitted
28 Nov 2021
Accepted
08 Dec 2022
First published
20 Dec 2022

Mol. Omics, 2023,19, 150-161

Activation of KLF6 by titanate nanofibers and regulatory roles of KLF6 on ATF3 in the endothelial monolayer and mouse aortas

F. Song, S. Li, X. Dai, F. Yang and Y. Cao, Mol. Omics, 2023, 19, 150 DOI: 10.1039/D1MO00470K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements