Issue 3, 2023

A variable-stiffness and healable pneumatic actuator

Abstract

Pneumatic-powered actuators are receiving increasing attention due to their widespread applications. However, their inherent low stiffness makes them incompetent in tasks requiring high load capacity or high force output. On the other hand, soft pneumatic actuators are susceptible to damage caused by over-pressuring or punctures by sharp objects. In this work, we designed and synthesized a coordination adaptable network (PETMP-AIM-Cu) with high mechanical rigidity (Young's modulus of 1.9 GPa and elongation <2% before fracturing) as well as excellent variable stiffness property (soft-rigid switching ability σ as high as 3 268 000 when ΔT = 90 °C). Combining PETMP-AIM-Cu with a self-healing elastomer based on dynamic disulfide bonds (LP-PDMS), we fabricated a new pneumatic actuator which shows high load capacity at room temperature, but can also easily deform upon heating and thus can be actuated pneumatically. Benefiting from the excellent self-healing ability of PETMP-AIM-Cu and LP-PDMS, the entire pneumatic actuator can still be actuated after being cut and healed. Such a variable-stiffness and healable pneumatic actuator would be useful for complex environmental applications.

Graphical abstract: A variable-stiffness and healable pneumatic actuator

Supplementary files

Article information

Article type
Communication
Submitted
25 Aug 2022
Accepted
15 Dec 2022
First published
15 Dec 2022

Mater. Horiz., 2023,10, 908-917

A variable-stiffness and healable pneumatic actuator

H. Wang, Z. Huang, D. Yue, F. Wang and C. Li, Mater. Horiz., 2023, 10, 908 DOI: 10.1039/D2MH01056A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements