Issue 7, 2023

Biological activity and structure–activity relationship of dehydrodieugenol B analogues against visceral leishmaniasis

Abstract

Visceral leishmaniasis is a neglected protozoan disease with high mortality. Existing treatments exhibit a number of limitations, resulting in a significant challenge for public health, especially in developing countries in which the disease is endemic. With a limited pipeline of potential drugs in clinical trials, natural products could offer an attractive source of new pharmaceutical prototypes, not least due to their high chemodiversity. In the present work, a study of anti-L. (L.) infantum potential was carried out for a series of 39 synthetic compounds based on the core scaffold of the neolignan dehydrodieugenol B. Of these, 14 compounds exhibited activity against intracellular amastigotes, with 50% inhibitory concentration (IC50) values between 3.0 and 32.7 μM. A structure–activity relationship (SAR) analysis demonstrated a requirement for polar functionalities to improve activity. Lacking mammalian cytotoxicity and presenting the highest potency against the clinically relevant form of the parasite, compound 24 emerged as the most promising, fulfilling the hit criteria for visceral leishmaniasis defined by the Drugs for Neglected Diseases initiative (DNDi). This study emphasizes the potential of dehydrodieugenol B analogues as new candidates for the treatment of visceral leishmaniasis and suggests 24 to be a suitable compound for future optimization, including mechanism of action and pharmacokinetic studies.

Graphical abstract: Biological activity and structure–activity relationship of dehydrodieugenol B analogues against visceral leishmaniasis

Supplementary files

Article information

Article type
Research Article
Submitted
16 Feb 2023
Accepted
17 May 2023
First published
26 May 2023
This article is Open Access
Creative Commons BY license

RSC Med. Chem., 2023,14, 1344-1350

Biological activity and structure–activity relationship of dehydrodieugenol B analogues against visceral leishmaniasis

M. Amaral, H. Asiki, C. E. Sear, S. Singh, P. Pieper, M. M. Haugland, E. A. Anderson and A. G. Tempone, RSC Med. Chem., 2023, 14, 1344 DOI: 10.1039/D3MD00081H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements