Issue 23, 2023

Further insights into the Na2WO4-assisted synthesis method for WS2

Abstract

Two-dimensional (2D) materials have become a hot topic in materials science, electronics, optoelectronics, and other fields. However, the practical applications of 2D materials rely heavily on the reliable synthesis of large-area, high-quality materials, which still poses a significant challenge. In this study, we present a detailed investigation into the Na2WO4-assisted synthesis of WS2. Our findings reveal that the substrate temperature and the sequence and duration of introducing S vapor are critical factors in manipulating the morphology of the WS2 products. Monolayer, thick film, and one-dimensional nanostructures can be obtained by varying the substrate temperature and the introduction sequence of S vapor. Furthermore, the introduction sequence and duration of S vapor can significantly impact the monolayer films' optical and electrical properties. Films synthesized with the introduction of S vapor before the evaporation of the W source exhibited strong photoluminescence (PL) emission, with a greater contribution from excitons. In contrast, films synthesized with the introduction of S vapor after the evaporation of the W source showed reduced PL emission, with a greater contribution from trions. Additionally, field effect transistors based on films synthesized with the introduction of S vapor before the evaporation of the W source displayed a larger threshold voltage and higher electron mobility. These findings suggest that the Na2WO4-assisted synthesis method for WS2 is highly controllable and pave the way for utilizing these monolayer WS2 materials for technological applications.

Graphical abstract: Further insights into the Na2WO4-assisted synthesis method for WS2

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2023
Accepted
09 Nov 2023
First published
09 Nov 2023
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2023,4, 6419-6426

Further insights into the Na2WO4-assisted synthesis method for WS2

C. Lan, X. Jia, Y. Wei, R. Zhang, S. Wen, C. Li, Y. Yin and J. C. Ho, Mater. Adv., 2023, 4, 6419 DOI: 10.1039/D3MA00867C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements