Issue 15, 2023

PEGylated poly(lactic-co-glycolic acid) nanoparticles doped with molybdenum-iodide nanoclusters as a promising photodynamic therapy agent against ovarian cancer

Abstract

Photodynamic applications requires efficient intracellular uptake of the photosensitizer that can be achieved through the development of nanoscaled delivery system. Herein, we prepared PEGylated poly(lactic-co-glycolic acid) nanoparticles doped with an octahedral molybdenum cluster complex bearing iodine inner ligands and o-carborane carboxylate apical ligands. This complex is a potent red luminophore and singlet oxygen photosensitizer under UV/blue-light irradiation, making it an attractive theranostic tool for photodynamic therapy and emerging modalities such as X-ray-induced photodynamic therapy or boron neutron/proton capture therapy. However, its hydrophobicity hinders its use in biological application and requires its encapsulation in nanocarriers. The nanoparticles, prepared using the solvent displacement method, displayed ideal properties in terms of size and zeta potential as a drug delivery system and exhibited a robust colloidal stability in biological medium, without the need of additional surfactant. The encapsulated complexes conserved their efficient red luminescence and singlet oxygen photosensitizing activity, while being protected from the detrimental hydrolysis process generally observed for this type of complexes in aqueous media. Evaluation of the in vitro biological activity of the nanoparticles against the ovarian cancer cell line SKOV-3 evidenced efficient uptake into the cellular membrane and cytoplasm and intensive phototoxic effect associated with an appreciable therapeutic window, suggesting potential as a photodynamic therapy agent against ovarian cancer.

Graphical abstract: PEGylated poly(lactic-co-glycolic acid) nanoparticles doped with molybdenum-iodide nanoclusters as a promising photodynamic therapy agent against ovarian cancer

Supplementary files

Article information

Article type
Paper
Submitted
02 May 2023
Accepted
26 Jun 2023
First published
27 Jun 2023
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2023,4, 3207-3214

PEGylated poly(lactic-co-glycolic acid) nanoparticles doped with molybdenum-iodide nanoclusters as a promising photodynamic therapy agent against ovarian cancer

A. Verger, G. Dollo, N. Brandhonneur, S. Martinais, S. Cordier, K. Lang, M. Amela-Cortes and K. Kirakci, Mater. Adv., 2023, 4, 3207 DOI: 10.1039/D3MA00206C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements