Issue 8, 2023

Development of cytocompatible protein-based hydrogels crosslinked using tetrakis(hydroxymethyl)phosphonium chloride

Abstract

Gelatin, a collagen derivative, possesses excellent properties such as high biocompatibility, high bioactivity, biodegradability, and low immunogenicity, making it an ideal candidate for developing hydrogels for biomedical applications. Gelatin hydrogels are often used in conjunction with other compounds and crosslinkers to improve their physicochemical properties. Tetrakis(hydroxymethyl)phosphonium chloride (THPC) is an amine-reactive crosslinker used previously for hydrogel preparation. However, its usage is limited due to its cytotoxicity at higher concentrations, mainly due to the formation of formaldehyde as a reaction intermediate. Herein, we report gelatin hydrogels crosslinked with THPC along with a novel thermal treatment method to improve the cytocompatibility of the developed hydrogels. Furthermore, LAPONITE® has been incorporated into the proposed hydrogels to further enhance its cytocompatibility along with physicochemical properties. The method of thermal treatment significantly improved the cell viability from ∼20% to ∼60% at a high THPC concentration of 8 mM which was further increased to ∼80% with LAPONITE® incorporation. Thermal treatment also increased the degradation time of hydrogels from ∼9 days to ∼18 days and LAPONITE® incorporation further increased it to ∼22 days at 8 mM THPC concentration. Based on the results, it can be concluded that the thermal treatment method can be an ideal choice for improving the cytocompatibility of THPC-based hydrogels and the synergistic effects of LAPONITE® and thermal treatment can make these hydrogels an ideal candidate for biomedical applications.

Graphical abstract: Development of cytocompatible protein-based hydrogels crosslinked using tetrakis(hydroxymethyl)phosphonium chloride

Article information

Article type
Paper
Submitted
05 Dec 2022
Accepted
16 Mar 2023
First published
20 Mar 2023
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2023,4, 1916-1926

Development of cytocompatible protein-based hydrogels crosslinked using tetrakis(hydroxymethyl)phosphonium chloride

J. J. Pandit, A. Shrivastava, T. Bharadwaj and D. Verma, Mater. Adv., 2023, 4, 1916 DOI: 10.1039/D2MA01068B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements