Issue 18, 2023

Label-free virtual staining of neutrophil extracellular traps (NETs) in microfluidics

Abstract

Neutrophils are the most abundant circulating white blood cells and one of their critical functions to eliminate pathogenic threats includes the release of extracellular DNA, also known as neutrophil extracellular traps (NETs), which is dysregulated in many diseases including cancer, type 2 diabetes mellitus and infectious diseases. Currently, conventional methods to quantify the NET formation (NETosis) rely on fluorescence antibody-based NET labelling or circulating NET-associated protein detection by ELISA, which are expensive, laborious, and time-consuming. In this work, we employed a novel “virtual staining” using deep convolutional neural networks (CNNs) to facilitate label-free quantification of NETs trapped in a micropillar array in a microfluidic device. Virtual staining is constructed to establish relations between morphological features in phase contrast images and fluorescence features in Sytox-green (DNA dye) images. We first investigated the effect of different learning rates on model training and optimized the learning rate to achieve the best model which can provide outputs close to Sytox green staining based on various reconstruction metrics (e.g., structural similarity (SSIM) and pixel-wise error (MAE, MSE)). The virtual staining of different NET concentrations was investigated which showed a linear correlation with fluorescent staining. As a proof of concept for clinical testing, the model was used to characterize purified neutrophils treated with NETosis inducers, including lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate (PMA), and calcium ionophore (CaI), and successfully detected different NET profiles for different treatments. Collectively, these results demonstrated the potential of using deep learning for enhanced label-free image analysis of NETs for clinical research, drug discovery and point-of-care testing of diseases.

Graphical abstract: Label-free virtual staining of neutrophil extracellular traps (NETs) in microfluidics

Supplementary files

Article information

Article type
Communication
Submitted
08 May 2023
Accepted
05 Aug 2023
First published
14 Aug 2023

Lab Chip, 2023,23, 3936-3944

Label-free virtual staining of neutrophil extracellular traps (NETs) in microfluidics

C. Petchakup, S. O. Wong, R. Dalan and H. W. Hou, Lab Chip, 2023, 23, 3936 DOI: 10.1039/D3LC00398A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements