Issue 8, 2023

A low-cost, label-free microfluidic scanning flow cytometer for high-accuracy quantification of size and refractive index of particles

Abstract

Flow cytometers and fluorescence activated cells sorters (FCM/FACS) represent the gold standard for high-throughput single-cell analysis, but their usefulness for label-free applications is limited by the unreliability of forward and side scatter measurements. Scanning flow cytometers represent an appealing alternative, as they exploit measurements of the angle-resolved scattered light to provide accurate and quantitative estimates of cellular properties, but the requirements of current setups are unsuitable for integration with other lab-on-chip technologies or for point-of-care applications. Here we present the first microfluidic scanning flow cytometer (μSFC), able to achieve accurate angle-resolved scattering measurements within a standard polydimethylsiloxane microfluidic chip. The system exploits a low cost linearly variable optical density (OD) filter to reduce the dynamic range of the signal and to increase its signal-to-noise ratio. We present a performance comparison between the μSFC and commercial machines for the label free characterization of polymeric beads with different diameters and refractive indices. In contrast to FCM and FACS, the μSFC yields size estimates linearly correlated with nominal particle sizes (R2 = 0.99) and quantitative estimates of particle refractive indices. The feasibility of using the μSFC for the characterization of biological samples is demonstrated by analyzing a population of monocytes identified based on the morphology of a peripheral blood mononuclear cells sample, which yields values in agreement with the literature. The proposed μSFC combines low setup requirements with high performance, and has great potential for integration within other lab-on-chip systems for multi-parametric cell analysis and for next-generation point-of-care diagnostic applications.

Graphical abstract: A low-cost, label-free microfluidic scanning flow cytometer for high-accuracy quantification of size and refractive index of particles

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2022
Accepted
07 Feb 2023
First published
10 Mar 2023
This article is Open Access
Creative Commons BY-NC license

Lab Chip, 2023,23, 2039-2047

A low-cost, label-free microfluidic scanning flow cytometer for high-accuracy quantification of size and refractive index of particles

R. Reale, G. Peruzzi, M. Ghoreishi, H. Stabile, G. Ruocco and M. Leonetti, Lab Chip, 2023, 23, 2039 DOI: 10.1039/D2LC01179D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements