Issue 20, 2023

Comparative urine metabolomics of mice treated with non-toxic and toxic oral doses of (−)-epigallocatechin-3-gallate

Abstract

The green tea polyphenol, (−)-epigallocatechin-3-gallate (EGCG), has been studied for its potential positive health effects, but human and animal model studies have reported potential toxicity at high oral bolus doses. This study used liquid chromatography-mass spectrometry-based metabolomics to compare the urinary EGCG metabolite profile after administration of a single non-toxic (100 mg kg−1) or toxic (750 mg kg−1) oral bolus dose to male C57BL6/J mice to better understand how EGCG metabolism varies with dose. EGCG metabolites, including methyl, glucuronide, sulfate, and glucoside conjugates, were tentatively identified based on their mass to charge (m/z) ratio and fragment ion patterns. Partial least squares discriminant analysis (PLS-DA) results showed clear separation of the urine metabolite profiles between treatment groups. The most differentiating metabolites in the negative and positive ion modes were provisionally identified as di-glucuronidated EGCG quinone and di-glucuronidated EGCG, respectively. The presence of EGCG oxidation products at toxic dose is consistent with studies showing that EGCG toxicity is associated with oxidative stress. Relative amounts of methylated metabolites increased with dose to a lesser extent than glucuronide and sulfate metabolites, indicating that methylation is more prominent at low doses, whereas glucuronidation and sulfation may be more important at higher doses. One limitation of the current work is that the lack of commercially-available EGCG metabolite standards prevented absolute metabolite quantification and identification. Despite this limitation, these findings provide a basis for better understanding the dose-dependent changes in EGCG metabolism and advance studies on how these differences may contribute to the toxicity of high doses of EGCG.

Graphical abstract: Comparative urine metabolomics of mice treated with non-toxic and toxic oral doses of (−)-epigallocatechin-3-gallate

Supplementary files

Article information

Article type
Paper
Submitted
05 Jul 2023
Accepted
01 Oct 2023
First published
02 Oct 2023

Food Funct., 2023,14, 9434-9445

Comparative urine metabolomics of mice treated with non-toxic and toxic oral doses of (−)-epigallocatechin-3-gallate

S. Hwang, I. Koo, A. D. Patterson and J. D. Lambert, Food Funct., 2023, 14, 9434 DOI: 10.1039/D3FO02710D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements