Issue 11, 2023

Bigels constructed from hybrid gelator systems: bulk phase-interface stability and 3D printing

Abstract

In this study, edible bigels with different ratios of beeswax-based oleogel to gellan gum-based hydrogel were developed and characterized. Gellan gum formed a 3D network in water through hydrogen bonding. Beeswax formed a crystalline network in the oil phase, which prevented the flow of oil and formed an oleogel. The position of the droplets is fixed by the crystallization of glycerol monostearate (GMS) at the interface. Bigels with different oleogel contents presented different types of O/W (oleogel content was less than 62%), semi-bicontinuous (oleogel content was 62–68%), and W/O bigels (oleogel content was more than 70%), respectively. Rheological experiments showed bigels had a shear thinning ability, which was suitable for extrusion 3D printing. Then the applicability of 3D printing was studied and it was found that the self-supporting ability of bigels became stronger with the increase of oleogel content. Functional pigments were incorporated into the bigel inks, making the 3D printing product nutrient-rich and color customizable. These results would favor guiding the preparation of bigels with adjusted physical properties and delicate structures for 3D food printing to satisfy the personal desire of consumers.

Graphical abstract: Bigels constructed from hybrid gelator systems: bulk phase-interface stability and 3D printing

Supplementary files

Article information

Article type
Paper
Submitted
08 Mar 2023
Accepted
30 Apr 2023
First published
05 May 2023

Food Funct., 2023,14, 5078-5089

Bigels constructed from hybrid gelator systems: bulk phase-interface stability and 3D printing

Z. Guo, Z. Chen and Z. Meng, Food Funct., 2023, 14, 5078 DOI: 10.1039/D3FO00948C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements