Issue 6, 2023

Building better aqueous Zn-organic batteries

Abstract

As potential alternatives to conventional inorganic materials, organic compounds are attractive for use as the cathodes of aqueous zinc-ion batteries (ZIBs), due to their high theoretical capacities, structural tunability, controllable synthesis and environmental friendliness. Herein, a systematic overview focusing on recent developments, energy storage mechanisms, and design and improvement strategies for aqueous Zn-organic batteries (ZOBs) is presented. In this review, we first summarize the ion storage mechanisms of aqueous ZOBs in detail, and then introduce the main methods for analyzing their dynamic behavior. Then, we systematically summarize the latest advances and design strategies for existing organic electrode materials based on their ion storage mechanisms and molecular structural characteristics, including n-type, p-type and bipolar-type electrode materials. Subsequently, for the first time, we summarize the main synthesis strategies of these organic electrode materials. Furthermore, we highlight the existing strategies to improve aqueous ZOBs to obtain higher electrochemical performance in terms of their specific capacity, working voltage, rate performance and cycle life, and to achieve lower preparation costs. Finally, the challenges for aqueous ZOBs to realize their practical application are discussed. Accordingly, rational perspectives and promising exploration directions for aqueous ZOBs are proposed to guide research towards practical applications, achieving a greener rechargeable world.

Graphical abstract: Building better aqueous Zn-organic batteries

Article information

Article type
Review Article
Submitted
20 Jan 2023
Accepted
28 Apr 2023
First published
04 May 2023

Energy Environ. Sci., 2023,16, 2398-2431

Building better aqueous Zn-organic batteries

Z. Li, J. Tan, Y. Wang, C. Gao, Y. Wang, M. Ye and J. Shen, Energy Environ. Sci., 2023, 16, 2398 DOI: 10.1039/D3EE00211J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements