Issue 5, 2023

Emerging concepts in intermediate carbon dioxide emplacement to support carbon dioxide removal

Abstract

Substantial upscaling of carbon dioxide capture is possible in the coming decades but existing solutions for storage are projected to be limited in annual capacity by as much as 2–10 GtCO2 per year until mid-century. Temporary storage of CO2 in a solid or liquid state could prove useful for filling this gap in capacity, until more permanent and ideally lucrative CO2 sequestration options come online. There are several concepts for reversible solid-state and chemical CO2 storage, but their advantages and limitations have yet to be reviewed in this context. This article focuses on the physical and chemical aspects of CO2 storage via liquid and solid chemical carriers and sorbents, and gives an overview of the energetics around their use, as well as prospects for their future development. Exciting opportunities for coupling capture and medium to high maturity multi-year storage technologies could support carbon removal in the coming decades. Highlights of the analysis are the remarkable storage capacity of oxalic acid and formic acid (CO2-density of 1857 kg m−3 and 1152 kg m−3, compared with condensed liquid CO2 at 993–1096 kg m−3, respectively), the relative scalability and compatibility of carbonate salts for stationary storage with direct air capture, and the potential promise of multiple carriers for CO2 transportation. Solid sorbents do not achieve such ultra-high storage capacities, but could improve storage over compressed gas tanks on a capacity and energetics basis.

Graphical abstract: Emerging concepts in intermediate carbon dioxide emplacement to support carbon dioxide removal

Supplementary files

Article information

Article type
Analysis
Submitted
08 Nov 2022
Accepted
27 Mar 2023
First published
18 Apr 2023
This article is Open Access
Creative Commons BY-NC license

Energy Environ. Sci., 2023,16, 1821-1837

Emerging concepts in intermediate carbon dioxide emplacement to support carbon dioxide removal

H. M. Breunig, F. Rosner, T. Lim and P. Peng, Energy Environ. Sci., 2023, 16, 1821 DOI: 10.1039/D2EE03623A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements