Issue 35, 2023

Luminescent iridium(iii) porphyrin complexes as near-infrared-emissive biological probes

Abstract

We report herein the design, synthesis and characterisation of a series of luminescent iridium(III) porphyrin complexes [Ir(ttp)(CH2CH2OH)] (H2ttp = 5,10,15,20-tetra-4-tolylporphyrin) (1), [Ir(tpp-Ph-NO2)(CO)Cl] (H2tpp-Ph-NO2 = 5-(4-((4-nitrophenoxy)carbonyloxymethyl)phenyl)-10,15,20-triphenylporphyrin) (2), [Ir(tpp-COOMe)(Py)2](Cl) (H2tpp-COOMe = 5-(4-methoxycarbonylphenyl)-10,15,20-triphenylporphyrin; Py = pyridine) (3) and [Ir(tpp-COOH)(Py)2](Cl) (H2tpp-COOH = 5-(4-carboxylphenyl)-10,15,20-triphenylporphyrin) (4). All the complexes displayed long-lived near-infrared (NIR) emission attributed to an excited state of mixed triplet intraligand (3IL) (π → π*) (porphyrin) and triplet metal-to-ligand charge transfer (3MLCT) (dπ(Ir) → π*(porphyrin)) character. The cytotoxicity of the complexes toward HeLa cells was examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cationic complexes 3 and 4 exhibited higher cytotoxic activity toward HeLa cells than their neutral counterparts 1 and 2. Cellular uptake studies by inductively coupled plasma-mass spectrometry (ICP-MS) and laser-scanning confocal microscopy (LSCM) indicated that complexes 3 and 4 showed higher cellular uptake efficiencies than complexes 1 and 2 due to their cationic charge, and they were enriched in the perinuclear region of the cells with negligible nuclear uptake. Additionally, the carboxyl complex 4 was used to label a model protein bovine serum albumin (BSA) via an amidation reaction. The resultant luminescent protein conjugate 4-BSA displayed similar photophysical properties and intracellular localisation behaviour to its parent complex. The results of this work will contribute to the development of luminescent iridium(III) porphyrin complexes and related bioconjugates as NIR-emissive probes for bioimaging applications.

Graphical abstract: Luminescent iridium(iii) porphyrin complexes as near-infrared-emissive biological probes

Supplementary files

Article information

Article type
Paper
Submitted
05 Jul 2023
Accepted
11 Aug 2023
First published
11 Aug 2023

Dalton Trans., 2023,52, 12444-12453

Luminescent iridium(III) porphyrin complexes as near-infrared-emissive biological probes

L. Hua, K. Y. Zhang, H. Liu, K. Chan and K. K. Lo, Dalton Trans., 2023, 52, 12444 DOI: 10.1039/D3DT02104A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements