Issue 32, 2023

Spin-state switching: chemical modulation and the impact of intermolecular interactions in manganese(iii) complexes

Abstract

A series of mononuclear manganese(III) complexes [Mn(X-sal2-323)](ReO4) (X = 5 Cl, 1; X = 5 Br, 2; X = 3,5 Cl, 3; X = 3,5 Br, 4; and X = 5 NO2, 5), containing hexadentate ligands prepared using the condensation of N,N′-bis(3-aminopropyl)ethylenediamine and 5- or 3,5-substituted salicylaldehyde, has been synthesized. Variable temperature single-crystal X-ray diffraction, magnetic, spectroscopic, electrochemical, and spectroelectrochemical analyses, and theoretical calculations have been used to explore the role of various ligand substituents in the spin-state switching behavior of the prepared manganese(III) complexes. All five complexes consist of an analogous distorted octahedral monocationic MnN4O2 surrounding offered by the flexible hexadentate ligand and ReO4 as the counter anion. However, a disordered water molecule was detected in complex 4. Complexes 1 (X = 5 Cl) and 5 (X = 5 NO2) show gradual and complete spin-state switching between the high-spin (HS) (S = 2) and the low-spin (LS) (S = 1) state with T1/2 values of 146 and 115 K respectively, while an abrupt and complete transition at 95 K was observed for complex 2 (X = 5 Br). Alternatively, complex 3 (X = 3, 5 Cl) exhibits an incomplete and sharp transition between the HS and LS states at 104 K, while complex 4 (X = 3, 5 Br) (desolvated) remains almost LS up to 300 K and then displays gradual and incomplete SCO at a higher temperature. The nature of the spin-state switch and transition temperature suggest that the structural effect (cooperativity) plays a more significant role in comparison with the electronic effect coming from various substituents (Cl, Br, and NO2), which is further supported by the detailed structural, electrochemical, and theoretical studies.

Graphical abstract: Spin-state switching: chemical modulation and the impact of intermolecular interactions in manganese(iii) complexes

Supplementary files

Article information

Article type
Paper
Submitted
03 Jun 2023
Accepted
18 Jul 2023
First published
19 Jul 2023

Dalton Trans., 2023,52, 11335-11348

Spin-state switching: chemical modulation and the impact of intermolecular interactions in manganese(III) complexes

S. Bagchi, S. Kamilya, S. Mehta, S. Mandal, A. Bandyopadhyay, A. Narayan, S. Ghosh and A. Mondal, Dalton Trans., 2023, 52, 11335 DOI: 10.1039/D3DT01707A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements