Issue 23, 2023

Designed anion and cation co-doped Na3Sb(WM)xS4 (M = Cl, Br, I) sulfide electrolytes with an improved conductivity and stable interfacial qualities

Abstract

The fabrication of all electrolytes from noncombustible ceramic materials offers a superior option for providing safer and higher-capacity batteries to fulfill future energy needs. To achieve a competitive performance with combustible liquid electrolytes used in commercial Li-ion batteries, the creation of ceramic material compositions with a high electrical conductivity is necessary. Here, we report that co-doping with W and halogens results in a superconductivity of 13.78 mS cm−1 in a cubic-phase Na3SbS4 glass ceramic electrolyte. After undergoing high-temperature heat treatments, the W ions in the electrolyte can facilitate the replacement of S atoms with halogens, introducing many Na vacancies. The samples also had a high degree of cycling stability. An excellent glass ceramic electrolyte for Na ion batteries will be constructed for Na3SbW0.25Cl0.25S4.

Graphical abstract: Designed anion and cation co-doped Na3Sb(WM)xS4 (M = Cl, Br, I) sulfide electrolytes with an improved conductivity and stable interfacial qualities

Article information

Article type
Paper
Submitted
17 Apr 2023
Accepted
10 May 2023
First published
11 May 2023

Dalton Trans., 2023,52, 7893-7905

Designed anion and cation co-doped Na3Sb(WM)xS4 (M = Cl, Br, I) sulfide electrolytes with an improved conductivity and stable interfacial qualities

L. Shu, J. Yin, Z. Gon, C. Gao, Y. Liu, X. Zhou, H. Ma, X. Zhang, X. Shen, S. Dai, C. Lin and Q. Jiao, Dalton Trans., 2023, 52, 7893 DOI: 10.1039/D3DT01151H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements