Solvent-induced structural regulation over Ni2P/CNT hybrids towards boosting the performance of supercapacitors†
Abstract
Although nickel-based phosphides have attracted increasing attention due to their good theoretical specific capacity, the poor rate capability weakness their advantage in electrochemical energy storage. It is, however, challenging to improve these issues by only adjusting composition. Here, we employ a synergistic strategy, both hybridizing with highly conductive materials and regulating morphology, to enhance the electrochemical performance of Ni2P. Based on solvent-induced effects, flower/rod-like [CH3NH3][Ni(HCOO)3] precursors hybridized with CNTs are prepared and then employed as templates to construct flower/rod-like Ni2P/CNT hybrids via a gas–solid phosphorization method. Benefiting from the synergistic advantages of both structure and components, the flower-like Ni2P/CNT hybrid, as an electrode materials for supercapacitor, exhibit outstanding specific capacitance of up to 1480 F g−1 at 1 A g−1, as well as improved rate capability. Additionally, the assembled asymmetric supercapacitor (Ni2P/CNTs//AC, ASC) delivers a high capacitance retention of up to 83.5% after 5000 cycles at 10 A g−1, and an expected energy density of 25.2 W h kg−1 at a power density of 749.8 W kg−1.