Issue 14, 2023

Multiple-phase evolution and electrical transport of Sr4−xYxCo4O12−δ (x = 0–1.0): an ordered phase transition process

Abstract

The transition metal oxide (TMO) SrCoO3−δ family with rich structural diversity has been widely studied in the phase transition and energy application fields. We report the multiple-phase structure evolution, phase transitions during sintering, and electrical transport of A-site doped Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics. Sr6Co5O15 (x = 0) adopts a hexagonal structure (H), Sr4−xYxCo4O12−δ (x = 0.2–0.4) ceramics adopts a cubic perovskite (CP) structure, and Sr4−xYxCo4O10.5+δ (x = 0.8–1.0) ceramics adopts an ordered-tetragonal (OT) structure; moreover, their phase transitions during the sintering processing of samples are systematically investigated. Combining the thermal analysis and X-ray diffraction results, the exothermic peak and weight gain of Sr3YCo4O10.5 (x = 1.0, T) at 1042 °C are considered to correspond to an ordered phase transition (T → OT) occurring. Finally, a systematic phase schema of the Sr4−xYxCo4O12−δ (x = 0–1.0) state dependence on the Y content and sintering temperature is obtained. The high-energy Y–O bond stabilizes the high-temperature CP structure (x = 0.2–0.4) and induces a structural evolution from the CP to OT structure (x = 0.8–1.0). In addition, all Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics show semiconductive electrical transport behavior. Sr6Co5O15 (H) with a one-dimensional chain structure has the highest resistivity, while Sr3.8Y0.2Co4O12−δ (CP) with a three-dimensional corner-sharing structure exhibits the lowest resistivity, and Sr4−xYxCo4O12−δ (x = 0.2–1.0) ceramics show an increasing tendency in resistivity due to the hole carrier Co4+ converting to Co3+. We studied multiple-phase evolution and ordered phase transition in Sr4−xYxCo4O12−δ (x = 0–1.0) ceramics through Y–O bonding.

Graphical abstract: Multiple-phase evolution and electrical transport of Sr4−xYxCo4O12−δ (x = 0–1.0): an ordered phase transition process

Supplementary files

Article information

Article type
Paper
Submitted
30 Jan 2023
Accepted
25 Feb 2023
First published
28 Feb 2023

Dalton Trans., 2023,52, 4398-4406

Multiple-phase evolution and electrical transport of Sr4−xYxCo4O12−δ (x = 0–1.0): an ordered phase transition process

H. Song, B. Liu, J. Zeng, G. Huo, L. Chen, J. Wang and L. Yu, Dalton Trans., 2023, 52, 4398 DOI: 10.1039/D3DT00294B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements