Issue 12, 2023

Thermodynamic and voltammetric study on carnosine and ferrocenyl-carnosine

Abstract

A potentiometric study on the interactions of L-carnosine (CAR) (2-[(3-aminopropanoyl)amino]-3-(1H-imidazol-5-yl)propanoic acid) with two toxic metal cations, Hg2+ and Cd2+, is reported here. The elucidation of the metal (M2+)–CAR interactions in aqueous solution highlighted the speciation model for each system, the dependence of the formation constants of the complex species on ionic strength (0.15 ≤ I/mol L−1 ≤ 1) and temperature (288.15 ≤ T/K ≤ 310.15) and changes in enthalpy and entropy. The sequestering ability of CAR towards the two metal ions was quantified and compared with that with Pb2+, previously determined. Considering the complexing ability of CAR and its unclear electrochemical properties, a more electroactive derivative, the ferrocenyl-carnosine (FcCAR), was synthesized and its complexing ability was evaluated by UV-vis spectroscopy. FcCAR electrochemical properties were investigated by Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) on Screen-Printed Electrodes (SPEs), to evaluate its sensing properties. Electrochemical responses in the presence of Hg2+ and Pb2+ have been shown to be promising for the electrochemical detection of these metal cations in aqueous environment.

Graphical abstract: Thermodynamic and voltammetric study on carnosine and ferrocenyl-carnosine

Supplementary files

Article information

Article type
Paper
Submitted
22 Dec 2022
Accepted
11 Feb 2023
First published
13 Feb 2023
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2023,52, 3699-3708

Thermodynamic and voltammetric study on carnosine and ferrocenyl-carnosine

C. Abate, A. Piperno, A. Fragoso, O. Giuffrè, A. Mazzaglia, A. Scala and C. Foti, Dalton Trans., 2023, 52, 3699 DOI: 10.1039/D2DT04093J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements