Issue 17, 2023

A convergent growth approach to electroactive ferrocene rich carbosilane- and siloxane-based dendrons, dendrimers, and dendronized polymers

Abstract

The construction of the first members of a novel family of structurally well-defined, ferrocenyl rich, dendritic macromolecules based on carbosilane skeletons and siloxane linkages has been achieved via a convergent growth approach. Starting from triferrocenylvinylsilane Fc3SiCH[double bond, length as m-dash]CH2 (1) (Fc = Fe(η5-C5H4)(η5-C5H5) as the key monomer, the sequential utilization of platinum-catalyzed hydrosilylation and alkenylation steps with Grignard reagents (allylmagnesium bromide) can be applied to prepare three different branched structures: multiferrocenyl-terminated dendrons 2 and 3, dendrimers 4 and 5, and dendronized polymers 7n–9n. All of the dendritic metallomacromolecules have been thoroughly characterized using a combination of elemental analysis, multinuclear (1H, 13C, 29Si) NMR spectroscopy, FT-IR and MALDI-TOF mass spectrometry, to establish their chemical structures and properties. The molecular structures of G1-dendron 3 and dendrimer 4, containing six and nine ferrocenyl units, respectively, have been successfully determined by single-crystal X-ray analysis, compound 4 being the branched multiferrocenyl-containing siloxane with the highest number of Fc substituents whose structure has been reported so far. Electrochemical studies (using cyclic voltammetry (CV) and square wave voltammetry (SWV) performed in dichloromethane solution with [PF6] and [B(C6F5)]4− as supporting electrolyte anions of different coordinating abilities) reveal that all the macromolecular compounds obtained exhibit a three-wave redox pattern, suggesting appreciable electronic interactions between the silicon-bridged triferrocenyl moieties as they are successively oxidized. In addition, dendrimer 5 and dendronized polymers 7n–9n, with 12 and 4 < n < 14 ferrocenyl units, respectively, linked in threes around the periphery, undergo remarkable oxidative precipitation in CH2Cl2/[n-Bu4N][PF6] and are able to form chemically modified electrodes with stable electroactive films.

Graphical abstract: A convergent growth approach to electroactive ferrocene rich carbosilane- and siloxane-based dendrons, dendrimers, and dendronized polymers

Supplementary files

Article information

Article type
Paper
Submitted
11 Dec 2022
Accepted
16 Mar 2023
First published
06 Apr 2023
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2023,52, 5663-5679

A convergent growth approach to electroactive ferrocene rich carbosilane- and siloxane-based dendrons, dendrimers, and dendronized polymers

S. Bruña, J. Perles and I. Cuadrado, Dalton Trans., 2023, 52, 5663 DOI: 10.1039/D2DT03983D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements