Issue 3, 2023

A neural network potential with rigorous treatment of long-range dispersion

Abstract

Neural Network Potentials (NNPs) have quickly emerged as powerful computational methods for modeling large chemical systems with the accuracy of quantum mechanical methods but at a much smaller computational cost. To make the training and evaluation of the underlying neural networks practical, these methods commonly cut off interatomic interactions at a modest range (e.g., 5.2 Å), so longer-range interactions like London dispersion are neglected. This limits the accuracy of these models for intermolecular interactions. In this work, we develop a new NNP designed for modeling chemical systems where dispersion is an essential component. This new NNP is extended to treat dispersion interactions rigorously by calculating atomic dispersion coefficients through a second set of NNs, which is trained to reproduce the coefficients from the quantum-mechanically derived exchange-hole dipole moment (XDM) model. The NNP with this dispersion correction predicts intermolecular interactions in very good agreement with the QM data, with a mean absolute error (MAE) of 0.67 kcal mol−1 and a coefficient of determination (R2) of 0.97. The dispersion components of these intermolecular interactions are predicted in excellent agreement with the QM data, with a mean absolute error (MAE) of 0.01 kcal mol−1 and an R2 of 1.00. This combined dispersion-corrected NNP, called ANIPBE0-MLXDM, predicts intermolecular interaction energies for complexes from the DES370K test set with an MAE of 0.69 kcal mol−1 and an R2 of 0.97 relative to high-level ab initio results (CCSD(T)), but with a computational cost that is billions of times smaller. The ANIPBE0-MLXDM method is effective for simulating large-scale dispersion-driven systems, such as molecular liquids and gas adsorption in porous materials, on a single computer workstation.

Graphical abstract: A neural network potential with rigorous treatment of long-range dispersion

Supplementary files

Article information

Article type
Paper
Submitted
28 Dec 2022
Accepted
30 Mar 2023
First published
30 Mar 2023
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2023,2, 718-727

A neural network potential with rigorous treatment of long-range dispersion

N. T. P. Tu, N. Rezajooei, E. R. Johnson and C. N. Rowley, Digital Discovery, 2023, 2, 718 DOI: 10.1039/D2DD00150K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements