Issue 23, 2023

How advances in theoretical chemistry meet industrial expectations in electrocatalysts for water splitting

Abstract

Fundamental knowledge about heterogeneous catalysis has significantly advanced in the last few years due to the awareness of the role of non-weakly correlated electrons in open-shell magnetic catalysts, and their degrees of freedom (charge, spin, orbital and structure). Such recognition represents a paradigm shift, because it proves the existence of non-linear oscillations with orbital filling, and also feasible deviations from the Bell–Evans–Polanyi (BEP) principle. By including all the relevant quantum interactions, orbital engineering seeks to identify potentially successful catalysts aprioristically by first principles. The approach does not include nor admit shortcuts. Two steps are needed to narrow down the synthetic quest for optimal catalysts (via orbital configurations), to boost and, concomitantly, fully understand catalytic activities: 1) obtaining the electronic properties, bond topology, populations, magnetic (spin–orbital ordering) structure to infer stability and reactivity, and 2) achieving complete mechanistic insights. Thus, quantum chemistry can be a powerful tool to reinforce traditional industrial developments in water electrolysis and accelerate catalytic designs by implementing physical rationality, while reducing considerably time and waste. This perspective intends to clarify the electrocatalytic challenges in using water electrolysers (WEL), and the advanced computational approaches to tackle them from the perspective of industrial needs.

Graphical abstract: How advances in theoretical chemistry meet industrial expectations in electrocatalysts for water splitting

Article information

Article type
Paper
Submitted
09 Jun 2023
Accepted
11 Sep 2023
First published
22 Sep 2023
This article is Open Access
Creative Commons BY-NC license

Catal. Sci. Technol., 2023,13, 6751-6763

How advances in theoretical chemistry meet industrial expectations in electrocatalysts for water splitting

J. Gracia, C. Biz, M. Fianchini and S. Amthor, Catal. Sci. Technol., 2023, 13, 6751 DOI: 10.1039/D3CY00797A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements