Transition in electronic and magnetic properties of transition metal embedded semimetallic B-graphyne†
Abstract
Spintronics is extremely important in the future development of information technology. Notably, two-dimensional carbon materials with atomically thick and p-electron systems have great potential for application in ultrathin spintronic devices. B-graphyne (B-GY) is a recently proposed two-dimensional carbon allotrope with double Dirac cones. It is a promising nanomaterial for high-speed spintronic devices due to its ultra-high Fermi velocity and thermodynamic stability. We tune the electronic and magnetic properties of B-GY by doping 3d transition metals (TM) (Cr, Mn, Fe, Co, Ni) based on first-principles calculations. After doping, TM forms strong covalent bonds (Fe, Co, Ni) and ionic bonds (Cr, Mn) with adjacent C atoms. The system of TM-doped B-GY (TM@B-GY) is transformed from a semimetal for B-GY to a metal (Cr, Mn, Fe, Co), but Ni@B-GY is still semimetal. Among them, Co@B-GY is approximately a half-metal. Moreover, TM (except Ni) can induce the magnetism of B-GY to undergo spin splitting. The TM d-orbitals are strongly coupled to the C p-orbitals, which play an important role in inducing magnetism. The results show that the tunable electronic and magnetic properties of TM@B-GY are promising as a high-speed spintronic device. Our research helps advance the study of semimetallic carbon allotropes in the field of spintronics.
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        