Issue 37, 2023

Effects of solvent vapor annealing on the optical properties and surface adhesion of conjugated D : A thin films

Abstract

A diketopyrrolopyrrole (DPP) and perylene diimide (PDI)-based molecule, denoted as PDI-DPP-PDI, was investigated as an electron acceptor material in bulk heterojunction (BHJ) solar cells, with poly[[4,8-bis [5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl] [2-(2-ethyl-1-oxohexyl)thieno[3,4-b]thiophenediyl]] (PBDTTT-CT) as an electron donor. The donor polymer and the acceptor molecule have complementary absorption spectra, which is an essential feature for energy collection in organic solar cells. However, AFM images indicated the presence of isolated and microsized PDI-DPP-PDI domains along the surface of the films, which reduced the power conversion efficiency. Therefore, to improve the homogenization of the acceptor along the film, a post-deposition treatment, denoted as solvent vapor annealing (SVA), was performed in a saturated atmosphere containing the vapour of an organic solvent for 3–10 minutes. This procedure changed the optical and morphological properties of the PBDTTT-CT : PDI-DPP-PDI active layer, resulting in increased power conversion efficiency values by more than 2.5 times (reaching 5.1%). Theoretical simulation pointed out that the experimental absorbance band localized at 580 nm, which appeared after SVA treatment, is possibly related to an intense simulated band with a maximum at 572 nm, resulting from a pair of transitions starting in the copolymer and ending in PDI-DPP-PDI, in regions where both are stacked at about 3 Å. The most significant natural transition orbitals (NTOs) related to these transitions indicated charge transfer character. Moreover, analyses carried out by power spectrum density (PDS) of images acquired from the SVA-treated film indicated that in the region of larger frequencies, across the length scale at around 30–70 nm, an additional fractal region appeared with a Ds of 0.95, indicating a flattened region, possibly related to changes in the overall conformation after SVA treatment. This indicates an improvement in the molecular packing, a feature not observed in the as-cast film. The analyses by force curve spectroscopy pointed out increased adhesion forces and adhesion energy in the PBDTTT-CT : PDI-DPP-PDI film after SVA treatment; this feature enhanced the interfacial interaction with the top electrodes, reflecting improved charge extraction in the photovoltaic device.

Graphical abstract: Effects of solvent vapor annealing on the optical properties and surface adhesion of conjugated D : A thin films

Supplementary files

Article information

Article type
Paper
Submitted
24 Jun 2023
Accepted
30 Aug 2023
First published
31 Aug 2023

Phys. Chem. Chem. Phys., 2023,25, 25280-25288

Effects of solvent vapor annealing on the optical properties and surface adhesion of conjugated D : A thin films

T. R. Casagrande, J. V. B. Júnior, J. C. Desordi, M. R. P. da Cunha, A. E. X. Gavim, L. N. Vidal, P. C. Rodrigues, I. Coondoo, D. J. Coutinho, R. M. Faria and A. G. Macedo, Phys. Chem. Chem. Phys., 2023, 25, 25280 DOI: 10.1039/D3CP02937A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements