Issue 30, 2023

Radiation response of Y3Al5O12 and Nd3+–Y3Al5O12 to Swift heavy ions: insight into structural damage and defect dynamics

Abstract

Understanding the behavior of a material under irradiation is paramount to its application in the nuclear industry. The present work explores the radiation response of garnet Y3Al5O12 (YAG) and Nd3+-substituted Y3Al5O12 (Nd-YAG) under a 100 MeV Iodine beam at varying fluences to mimic the effect of fission fragments. This is relevant to the potential application of garnet as a host for minor actinide (MA) transmutation (Nd3+: surrogate for long-lived MA (Am3+, Np3+, Cm3+)). The un-irradiated and irradiated YAG and Nd-YAG samples were investigated by X-ray diffraction and Raman spectroscopy. Positron annihilation spectroscopy, thermal spike modelling and theoretical studies have been employed to understand the role of substitution and defect energetics in influencing this radiation response. Although both materials were not completely amorphized under the present irradiation conditions, a tremendous loss in crystallinity could be observed with increase in fluence, the damage being much more in Nd-YAG. Ion track radii of 2.17 nm and 2.91 nm were estimated for YAG and Nd-YAG respectively. Thermal-spike calculations show an increase in radiation-induced transient temperatures upon Nd-substitution that causes greater radiation damage in Nd-YAG. The enhancement in radiation-induced damage with increasing ion-fluence manifests in broadening and weakening of the Raman modes and XRD peaks. An increase in the average positron annihilation lifetime indicated the creation of oxygen vacancies. The defect formation energies of Y3Al5O12 have been theoretically estimated via density functional theory (DFT) and unfavorable energies required for creating cation pair anti-sites have been proposed as one of the possible reasons for the relatively poorer radiation response of YAG. The irradiation behavior of Y3Al5O12 has been compared with disordered fluorite (YSZ) and zirconate pyrochlores, which are well-researched ceramics for MA transmutation.

Graphical abstract: Radiation response of Y3Al5O12 and Nd3+–Y3Al5O12 to Swift heavy ions: insight into structural damage and defect dynamics

Supplementary files

Article information

Article type
Paper
Submitted
12 Jun 2023
Accepted
04 Jul 2023
First published
20 Jul 2023

Phys. Chem. Chem. Phys., 2023,25, 20495-20509

Radiation response of Y3Al5O12 and Nd3+–Y3Al5O12 to Swift heavy ions: insight into structural damage and defect dynamics

K. Bhandari, V. Grover, P. Kalita, K. Sudarshan, B. Modak, S. K. Sharma and P. K. Kulriya, Phys. Chem. Chem. Phys., 2023, 25, 20495 DOI: 10.1039/D3CP02734A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements