Issue 34, 2023

Light-responsive organic polaritons from first principles

Abstract

Controlling the optical properties of light-responsive organic molecules is essential for their application in photonics. We demonstrate how light-responsive organic polaritons formed inside an optical cavity can be used to modify these properties based on first principles. Specifically, we study the excited state properties of the trans-azobenzene molecule and the free base tetraphenyl porphyrin (H2TPP) molecule under weak to strong light-matter coupling. Our results show that the cavity can modulate the dispersion and absorption properties of organic molecules. Compared to the case outside the cavity, the anomalous dispersion of the trans-azobenzene molecule inside the cavity is suppressed and this suppression decreases with increasing coupling strength, showing the potential of strong light-matter coupling in manipulating the optical dipole trap of organic molecules. Moreover, by adjusting the cavity parameters to tune the strength of the light-matter coupling, we achieve free switching between symmetric Lorentz and asymmetric Fano line shapes for H2TPP polaritonic excitations. During the switching between these spectral features, we also find that the cavity can be used to control the spontaneous radiation of organic molecules via the Purcell effect. These findings provide a new pathway to manipulate the optical properties of light-responsive organic molecules.

Graphical abstract: Light-responsive organic polaritons from first principles

Article information

Article type
Paper
Submitted
31 May 2023
Accepted
12 Aug 2023
First published
15 Aug 2023

Phys. Chem. Chem. Phys., 2023,25, 23092-23099

Light-responsive organic polaritons from first principles

X. Guo, X. Cheng and H. Zhang, Phys. Chem. Chem. Phys., 2023, 25, 23092 DOI: 10.1039/D3CP02515B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements