Issue 31, 2023

Integrated experimental and theoretical studies on structural and magnetic properties of thin films of double perovskite ruthenates: Ba2DyRuO6 & Sr2DyRuO6

Abstract

Thin films of double perovskite ruthenates, viz., Ba2DyRuO6 (BDRO) and Sr2DyRuO6 (SDRO), have been successfully grown on a SrTiO3 substrate using the pulsed laser deposition technique. The BDRO samples crystallizes in cubic structure, while SDRO exhibits monoclinic structure as revealed in their X-Ray diffraction examination. Temperature-dependent magnetization measurements suggest the presence of ferromagnetism in BDRO, while paramagnetism is present for the SDRO thin film. Surprisingly, both films show canted antiferromagnetism at ∼T = 5 K as revealed in their isothermal magnetization curves. The inverse susceptibility has been fitted to the Curie–Weiss law for the SDRO sample, where the Curie temperature (TC ∼ −336.6 K) has been obtained, thus suggesting the prevalence of antiferromagnetic interactions. The existence of the canted magnetism at a lower temperature may be attributed to the Dzyaloshinskii–Moriya (D–M) interactions in the monoclinic SDRO sample due to structural distortion. However, the emergence of canted antiferromagnetism at lower temperatures (5 K) in the BDRO sample with cubic symmetry having no D–M interactions may be attributed to the various modifications at the surface of the thin films. Overall, a comparison made between the magnetic properties of both the thin films i.e., BDRO & SDRO, reveals the suppression of bulk magnetic ordering when compared to their bulk counterparts. The possible reason for the absence of any magnetic ordering in these thin films may be due to any modifications in superexchange interactions, any exchange bias, stress–strain, or uncompensated spins present in these types of thin films. UV-visible measurements for both the samples reveal a direct influence of the A-site element (Sr/Ba) on their band gaps, i.e., 3.66 eV and 2.59 eV for BDRO and SDRO samples, respectively, hence suggesting their insulating nature. We have also carried out first principles calculations with DFT using the CASTEP software to gain more insights into the experimental data. These thin films with insulating-antiferromagnetic properties may be crucial for “spintronics devices”.

Graphical abstract: Integrated experimental and theoretical studies on structural and magnetic properties of thin films of double perovskite ruthenates: Ba2DyRuO6 & Sr2DyRuO6

Article information

Article type
Paper
Submitted
02 May 2023
Accepted
27 Jun 2023
First published
29 Jun 2023

Phys. Chem. Chem. Phys., 2023,25, 20863-20870

Integrated experimental and theoretical studies on structural and magnetic properties of thin films of double perovskite ruthenates: Ba2DyRuO6 & Sr2DyRuO6

S. Dani, R. Kumar, H. Sharma, R. J. Choudhary, N. Goyal, P. Kaur and R. Pandit, Phys. Chem. Chem. Phys., 2023, 25, 20863 DOI: 10.1039/D3CP02020G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements