Issue 27, 2023

The interplay between size, shape, and surface segregation in high-entropy nanoalloys

Abstract

The respective influences of particle shape and size on the energetic stability of five-component multimetallic nanoparticles have been computationally investigated for AlCuFeCrNi and AuCuPdNiCo mixtures at equiconcentration. Using available embedded-atom model potentials, exchange Monte Carlo simulations possibly assisted with systematic quenching, we explore tools to approach ideal phase equilibrium in such high-entropy nanoalloys. In particular, we show how deviations to ideal solid solution behaviors can be characterized using percolation analyses, and how the contribution of alloying fluctuations at finite temperature can be inferred to evaluate the entropy of mixing in such nonideal cases. An approximation to the entropy of mixing based on pair correlations only is also found to capture the behavior of the thermodynamical mixing entropy quite well, and can be used as an order parameter of mixing. While the AlCuFeCrNi mixture appears to mix reasonably well in all cases considered, cobalt and nickel segregate significantly in AuCuPdNiCo nanoparticles, deviating strongly from ideal random mixtures. A simple Gaussian regression model applied to a coarse distribution of concentrations is found to correctly predict conditions for optimising the mixing thermodynamical properties of the miscible AlCuFeCrNi nanoparticle.

Graphical abstract: The interplay between size, shape, and surface segregation in high-entropy nanoalloys

Supplementary files

Article information

Article type
Paper
Submitted
24 Apr 2023
Accepted
13 Jun 2023
First published
14 Jun 2023
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2023,25, 18439-18453

The interplay between size, shape, and surface segregation in high-entropy nanoalloys

F. Calvo, Phys. Chem. Chem. Phys., 2023, 25, 18439 DOI: 10.1039/D3CP01869E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements