Issue 42, 2023

Proton conductivity in multi-component ABO4-type oxides

Abstract

This work investigates how configurational entropy in oxides could affect proton conductivity. For this purpose, three samples of different elemental compositions are synthesized. Five, six and seven elements were introduced into the A-site of ANbO4, forming La1/5 Nd1/5 Sm1/5Gd1/5 Eu1/5NbO4, La1/6Nd1/6Sm1/6Gd1/6Eu1/6Ho1/6NbO4 and La1/7Nd1/7Sm1/7Gd1/7Eu1/7Ho1/7Er1/7NbO4, respectively. The high configuration disorder changes the local environment, which can have a notable effect on many properties, including proton transport, which is the focus of this work. The conductivity was measured in different atmospheres; dry and wet and in a different temperature range (600–800 °C) to compare the proton transport as well as study the effect of temperature. A homogenous single-phase monoclinic fergusonite was obtained for the three samples. Proton conductivity, measured by means of comparing the conductivity in dry and wet atmospheres, was observed in all samples. La1/5 Nd1/5 Sm1/5Gd1/5 Eu1/5NbO4 exhibited the highest conductivity, about 3.0 × 10−6 S cm−1 at 800 °C in the wet atmosphere, while in the dry atmosphere it was about 2.2 × 10−6 S cm−1 at the same temperature, which implies a modest proton conductivity in this class of materials.

Graphical abstract: Proton conductivity in multi-component ABO4-type oxides

Supplementary files

Article information

Article type
Paper
Submitted
17 Apr 2023
Accepted
09 Oct 2023
First published
10 Oct 2023

Phys. Chem. Chem. Phys., 2023,25, 29127-29134

Proton conductivity in multi-component ABO4-type oxides

A. A.A. Elameen, A. Dawczak, T. Miruszewski, M. Gazda and S. Wachowski, Phys. Chem. Chem. Phys., 2023, 25, 29127 DOI: 10.1039/D3CP01741A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements