Issue 29, 2023

Rationally heteroarylated pyridines as hole transport materials for OLEDs

Abstract

The advancement in developing highly efficient hole transport materials for OLED devices has been a challenge over the past several years. For an efficient OLED device, there should be an efficient promotion of charge carriers from each electrode and effective confinement of triplet excitons in the emissive layer of the phosphorescent OLED (PhOLED). Thus, the development of stable and high triplet energy hole transport materials is in urgent demand for high-performing PhOLED devices. The present work demonstrates the development of two hetero-arylated pyridines as high triplet energy (2.74–2.92 eV) multifunctional hole transport materials to reduce the exciton quenching and to enhance the extent of charge carrier recombination in the emissive layer. In this regard, we report the design, synthesis, and theoretical modeling with electro-optical properties of two molecules, namely PrPzPy and MePzCzPy, with suitable HOMO/LUMO energy levels and high triplet energy, by incorporating phenothiazine as well as other donating units into a pyridine scaffold, and finally developing a hybrid phenothiazine–carbazole–pyridine based molecular architecture. The natural transition orbital (NTO) calculations were done to analyze the excited state sensation in these molecules. The long-range charge transfer characteristics between the higher singlet and triplet states were also analyzed. The reorganization energy of each molecule was calculated to examine their hole transportability. The theoretical calculations for PrPzPy and MePzCzPy revealed that these two molecular systems could be promising materials for the hole transport layer of OLED devices. As a proof of concept, a solution-processed hole-only device (HOD) of PrPzPy was fabricated. The increase in current density with an increase in operating voltage in the range of ∼3–10 V supported that the suitable HOMO energy of PrPzPy can facilitate the hole transportation from the hole injection layer (HIL) to the emissive layer (EML). These results indicated the promising hole transportability of the present molecular materials.

Graphical abstract: Rationally heteroarylated pyridines as hole transport materials for OLEDs

Supplementary files

Article information

Article type
Paper
Submitted
16 Apr 2023
Accepted
03 Jun 2023
First published
12 Jul 2023

Phys. Chem. Chem. Phys., 2023,25, 19648-19659

Rationally heteroarylated pyridines as hole transport materials for OLEDs

K. Kumar, A. Karmakar, F. Chen, J. Jou, S. Ghosh, S. Banik and S. Kumar, Phys. Chem. Chem. Phys., 2023, 25, 19648 DOI: 10.1039/D3CP01726E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements