Issue 27, 2023

Electrochemical assessment of a tripodal thiourea-based anion receptor at the liquid|liquid interface

Abstract

Thiourea-based receptors for anions have been widely studied due to their ability to transport anions across phospholipid bilayers. The binding affinity of a tripodal thiourea-based receptor for anions was assessed at the aqueous|organic interface using electrochemical measurements. A 1 : 1 stoichiometry was determined for the complexation of most anions, with a higher stoichiometry found in the presence of excess Cl and Br anions. High stability constants were estimated for the formation of the complexes at the aqueous|1,2-dichlorobenzene (DCB) interface. When compared with an organic solvent of higher polarity, nitrobenzene (NB), the high stability constants observed in DCB are believed to be due to the less competitive environment of the less polar solvent. Protonation of the receptor at the bridgehead tertiary amine was also inferred from the potential-dependent voltammetric measurements that are not related to anion:receptor complexation. The inherent advantages of the electrochemical method with the use of low polarity solvents are expected to provide new insights into the binding and transport of newly-developed neutral receptors.

Graphical abstract: Electrochemical assessment of a tripodal thiourea-based anion receptor at the liquid|liquid interface

Supplementary files

Article information

Article type
Paper
Submitted
29 Mar 2023
Accepted
11 Jun 2023
First published
12 Jun 2023
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2023,25, 18121-18131

Electrochemical assessment of a tripodal thiourea-based anion receptor at the liquid|liquid interface

H. A. Al Nasser, L. Martinez-Crespo, S. J. Webb and R. A. W. Dryfe, Phys. Chem. Chem. Phys., 2023, 25, 18121 DOI: 10.1039/D3CP01431B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements