Issue 5, 2023

Abnormal vibrational anisotropy and thermal properties of a two-dimensional GeAs semiconductor

Abstract

Anisotropy in a crystal structure plays a striking role in determining the optical, electrical and thermal properties of the condensed matter. Here, we investigated in-plane vibrational anisotropy in a two-dimensional (2D) van der Waals (vdW)-layered GeAs narrow-gap semiconductor by combining microstructural characterization and polarization Raman spectroscopy. Interestingly, not only the intensities but also the Raman shifts in all modes evolved periodically with different symmetries as the polarization angle changed continuously, which could be well-analyzed using the Raman tensors and further interpreted from the phonon dispersion relations. More importantly, the temperature-dependent Raman intensities of the Raman modes in the range from 83 K to 823 K gave a thermal-related uniform constant, based on which key parameters, including the thermal expansion coefficient, Grüneisen constant and quasi-particle lifetime, could be directly derived, which were in line with the calculated predictions. This investigation provides a comprehensive understanding of structure-dependent optical anisotropy in 2D vdW-layered GeAs and suggests a new idea for exploring the thermal properties of related materials using temperature-dependent Raman spectroscopy.

Graphical abstract: Abnormal vibrational anisotropy and thermal properties of a two-dimensional GeAs semiconductor

Supplementary files

Article information

Article type
Paper
Submitted
10 Nov 2022
Accepted
26 Dec 2022
First published
26 Dec 2022

Phys. Chem. Chem. Phys., 2023,25, 3745-3751

Abnormal vibrational anisotropy and thermal properties of a two-dimensional GeAs semiconductor

Y. Liu, S. Yang, F. Sui, R. Qi, S. Dong, P. Yang and F. Yue, Phys. Chem. Chem. Phys., 2023, 25, 3745 DOI: 10.1039/D2CP05264D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements