Influence of interfacial water and cations on the oxidation of CO at the platinum/ionic liquid interface†
Abstract
CO oxidation is fundamental to the development of new catalyst materials for fuel cells and key for complete oxidation of small alcohols like methanol or ethanol on Pt catalysts. So far, room-temperature ionic liquids (RTIL) have been used to modify the selectivity and activity in electrocatalysis. In order to understand the mechanism of CO oxidation in RTIL in more detail we have investigated this reaction at the Pt(111)/1-butyl-3-methylimidazolium trifluorosulfonylimide [BMIM][NTf2] electrode/electrolyte interface as a function of H2O concentration and electrode potential with in situ sum-frequency generation (SFG) spectroscopy and infrared absorption spectroscopy (IRAS). Using SFG spectroscopy, we address the changes of linearly bonded CO molecules on Pt(111), while we monitor the changes in the bulk electrolyte with IRAS through vibrational bands from H2O, CO2 and CO. The presence of water in [BMIM][NTf2] shifts the onset potential for CO oxidation by more than 200 mV when the water concentration is increased from 0.01 to 1.5 M, which we relate to the incorporation and the availability of water at the electrode/electrolyte interface. The nature of the RTIL cation has also a large effect on the surface excess of H2O since RTILs like [BMMIM][NTf2] and [BMPyrr][NTf2] which are prone to form closed-packed structures, can block the incorporation of water and lead to more sluggish CO oxidation with larger overpotentials and oxidation in a much wider potential range for which we provide evidence by additional SFG measurements. These results clearly show that the choice of the RTIL is important for CO oxidation on Pt(111) electrode surfaces – an observation that is likely highly relevant also to other catalysts and catalytic reactions that require the presence of interfacial water.