Issue 1, 2023

Stable antiferromagnetism and semiconducting-to-metal transition in ALaCuOsO6 (A = Ba and Sr): strain modulations

Abstract

Double perovskite oxides (DPO) with antiferromagnetic ground state have received much consideration as they exhibit small stray-field and ultra-fast spin dynamics, which is extremely convenient for high-density and high-frequency data storage devices. It is a well-established fact that strain can easily tune the physical properties of the materials; therefore, the electronic and magnetic properties of recently synthesized ordered ALaCuOsO6 (A = Ba and Sr) DPO under biaxial ([110]) strain are investigated using ab initio calculations. Our results revealed that the unstrained systems exhibit semiconducting states having energy band gaps (Eg) of 0.28 and 0.39 eV for A = Ba and Sr, respectively. Along with this, both structures exhibit AFM ground state due to a strong AFM coupling between partially filled high-energy Cu+ e1g↑ and low-energy empty Os+5 t02g↓ orbitals. The calculated partial spin moments of Cu and Os ions are 0.65/0.66 and 1.58/1.60μB in a Ba-/Sr-doped system having electronic configurations of 3d9 (t32g↑t32g↓e2g↑e1g↓) with S = 0.5 and 5d3 (t32g↑) with S = 1.5, respectively. The robustness of AFM spin ordering is affirmed under the strain effects. The most striking feature of the present study is that Ba- and Sr-doped systems demonstrate an electronic transition from semiconductor to metal at critical tensile strains of +4% and +5% along with improved magnetism as well as Néel temperature, respectively. However, the magnetic ground state remains robust against applied strains in both cases. Hence, the present study shows that strain engineering could be a practical tool to modulate the electronic and magnetic properties of DPO to further enhance their technological applications in spintronics.

Graphical abstract: Stable antiferromagnetism and semiconducting-to-metal transition in ALaCuOsO6 (A = Ba and Sr): strain modulations

Supplementary files

Article information

Article type
Paper
Submitted
29 Sep 2022
Accepted
03 Dec 2022
First published
09 Dec 2022

Phys. Chem. Chem. Phys., 2023,25, 838-846

Stable antiferromagnetism and semiconducting-to-metal transition in ALaCuOsO6 (A = Ba and Sr): strain modulations

S. Nazir and Y. Cheng, Phys. Chem. Chem. Phys., 2023, 25, 838 DOI: 10.1039/D2CP04548F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements