Issue 3, 2023

Inspecting molecular aggregate quadratic vibronic coupling effects using squeezed coherent states

Abstract

We present a systematic comparison of three quantum mechanical approaches describing excitation dynamics in molecular complexes using the time-dependent variational principle (TDVP) with increasing sophistication trial wavefunctions (ansatze): Davydov D2, squeezed D2 (sqD2) and a numerically exact multiple D2 (mD2) ansatz in order to characterize validity of the sqD2 ansatz. Numerical simulations of molecular aggregate absorption and fluorescence spectra with intra- and intermolecular vibrational modes, including quadratic electronic–vibrational (vibronic) coupling term, which is due to vibrational frequency shift upon pigment excitation are presented. Simulated absorption and fluorescence spectra of a J type molecular dimer with high frequency intramolecular vibrational modes obtained with D2 and sqD2 ansatze match the spectra of mD2 ansatz only in the single pigment model without quadratic vibronic coupling. In general, the use of mD2 ansatz is required to model an accurate dimer and larger aggregate's spectra. For a J dimer aggregate coupled to a low frequency intermolecular phonon bath, absorption and fluorescence spectra are qualitatively similar using all three ansatze. The quadratic vibronic coupling term in both absorption and fluorescence spectra manifests itself as a lineshape peak amplitude redistribution, static frequency shift and an additional shift, which is temperature dependent. Overall the squeezed D2 model does not result in a considerable improvement of the simulation results compared to the simplest Davydov D2 approach.

Graphical abstract: Inspecting molecular aggregate quadratic vibronic coupling effects using squeezed coherent states

Article information

Article type
Paper
Submitted
09 Sep 2022
Accepted
30 Oct 2022
First published
22 Nov 2022

Phys. Chem. Chem. Phys., 2023,25, 1705-1716

Inspecting molecular aggregate quadratic vibronic coupling effects using squeezed coherent states

M. Jakučionis, A. Žukas and D. Abramavičius, Phys. Chem. Chem. Phys., 2023, 25, 1705 DOI: 10.1039/D2CP04212F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements