Surface functionalized 3D printed metal structures as next generation recyclable SERS substrates
Abstract
Combining the design flexibility and rapid prototyping capabilities of additive manufacturing with photocatalytic and plasmonic functionalities is promising for the development of next-generation SERS applications such as point of care diagnostics and in situ monitoring of chemical reactions in fuels and chemical processing. Laser powder bed fusion (LPBF) is a well-matured additive manufacturing technique which generates metallic structures through localised melting and joining of metal powders using a laser. LPBF reduces material wastage during manufacturing, is applicable to a wide range of metals and alloys, and allows printing of complex internal structures. This feature article elaborates the use of soot templating, chemical vapour deposition and electroless plating techniques for grafting plasmonic and semiconductor nanoparticles on the surface of LPBF manufactured metallic substrates. The capability to fabricate different types of intricate metallic lattices using additive manufacturing is demonstrated and technical challenges in their adequate functionalization are elaborated. The developed methodology allows tailoring of the substrate structure, composition, morphology, plasmonic and photocatalytic activities and thus unveils a new class of recyclable SERS substrates.